(GERE Gigascrle

RAMP Blue: A Message-Passing 255 cores o
Many-Core System in FPGAs T & v FRGaa B cors por A

~ 100MHz Xilinx MicroBlaze soft cores
running uCLinux,

— Dec 06: 256 cores running benchmark
suite of UPC NAS Parallel Benchmarks

GSRC Fall Symposium 2007 + V2:768 cores fotal

— 16 BEE2 modules, 12 cores per FPGA

— Cores running at 90 MHz
September 20th, 2007 + V3:1008 cores total
— 21BEE2 modules, 12 cores per FPGA
— Summer 2007
* V4 Upcoming release

Alex Krasnov, Andrew Schultz, John Wawrzynek, Greg Sl

CPNT y . — Growing parameterization support
Gibeling, and Pierre-Yves Droz — Waiting on external code bug fixes
+ Future versions

— Use newer BEE3 FPGA platform
Support for other processor cores.

m 16 Module 3D Mesh

Jive—— | pater— |

+ InterModule —9 module 151
— 10Gb/s serial links permit a wide variety of topologies
— High latency (10’s of cycles)
— All-To-All Topology
+ Used in RAMP Blue v1-v2

« Each FPGA is at most 4 on-module links + 1 serial link S ¢ ‘
connection away from any other L

module 141

« + Minimizes dependence on use of serial links: @ FrPGA
« - Scales only to 17 modules total MeTink
— 3-D mesh
+ Used in newer topologies
* InterFPGA
— High speed parallel /0O
— Organized as aring
— Low latency (2-3 cycles)
« InterCore
— All-to-all within an FPGA Lo
— Only 12 cores module0 | [T

. User FPGA 4 User FPGA 3 User FPGA 2 User FPGA 1 ‘

— LvCuoS ink -t
S

=12

@ BEE2 Module !
MGT Link !

e

I
| 1 ()
: A ! \
; f-=of |
il I\ 71 Tk I .]
A} [i
)] L N

i

m MicroBlaze v4 m Node Architecture

RAMP Control
L Ve 077 FPGA
- 3-stage, RISC designed for FPGAs e ne Toer FPGA
= — 1~ — (1 MicroBlaze = 1/8" of a User FPGA)

— Accounts for FPGA features & shortcomings
« fast carry chains
« lack of CAMs in cache
— Short pipeline minimizes multiplexors in bypass logic

* Max clock rate of 100 MHz (~0.5 MIPS/MHz) on Virtex-Il Pro | Parate
« Split | and D cache with configurable size, direct mapped _—
-

— We use 2KB $I, 8KB $D)
« Optional single precision floating point unit
« Up to 8 independent fast simplex links (FSLs) with ISA support
« Configurable hardware debugging support (watch/breakpoints)
— MDM (Microprocessor Debug Module)
* GCC tool chain support and ability to run uClinux

MicroBlaze

To othe laze
(Multiple Channels)

Memory System

Ober o 0 o « DIMMs are shared, Memory is not

— More MicroBlaze cores than DIMMs
— No coherence, DIMMs are partitioned
— Bank management isolates cores

XCLinterface User Memory DDR?2 Command DDR? Interface

ietacs tetace
=\
y \
\

B < N\
Ve ~— Memory| T M v
L n| Asynchronous | Lo —
?Q’c‘te)r D Command FRO DDR2 Controller =—{ [[] [
[1ES
—

100MHz Domain | 200MHz Domain

| Ky)

Processor!

Processor2

: Double Precision FPU m Network Characteristics

+ Shared FPU * Interface

Necessary due to size constraints - Simple FSL channels
Y — Currently programmed 1/0, but could/should be DMA

— Similar to “reservation stations” — Encapsulated Ethernet packets with source routes prepended
* Implemented with Xilinx CoreGen library FP * Source routing between nodes
components — dimension-order style routing, non-adaptive = link failure intolerant

— FPGA-FPGA and board-to-board link failure rare (1 error / 1M packets)

— CRC checks for corruption, software (GASNet/UDP) uses acks/time-
{emd. op1. op2} N {resultp outs and retransmits for reliable transport

@?s"tmw \\ AN | ser M;gﬁiz;ﬁ « Cut through flow control with virtual channels for deadlock
D N N — avoidance
* Topology of interconnect
— Full cross-bar on chip
MicroBlaze) — Ring on module

FSLRead) ‘ — Intermodule: all-to-all (v1-2), 3D mesh (v3-on) ‘

- ~
MicroBlaze n
FSL Write

Network Implementation Early “Ideal” Floorplan

* 16 Xilinx MicroBlazes
per XC2VP70 FPGA

e + Each group of 4

T — clustered around a

Crossbx ’) '
Suich | Switch (8b wide) memory interface
provides Global

Xaui1 JLVCNOB LT EVERPEDE xaui2

User FPGAT < xm:>" Ee %) A User FPGA2
<

tocalswitéh

vt i connections i * FP Integrated with
between all on-chip
Sapl cores, 2 fpga-fpga MieroBlaze crbBtaze WieroBtaze| MictoBiake each core
links, & 4 module- Wemory Avbter Wamory At
module links
MicroBlaze| User FPGA1 MicroBlaze [MicroBlaze MicroBlazo| MicroBlaze
Board 2

XAUI 3 JvemosRighe | 1! LveMos U XAUIY

(In current versions, processor connection to

network is programmed 1/O limiting performance.) ‘ ‘

« FPU size/efficiency
— Shared block

Scaling is resource

constrained

— 16 cores would fit without
infrastructure (network, FPU)

Floorplanned 15

— FPU and switch placement 3 4

— Uses roughly 93% of logic ;
blocks, 55% BRAMs. :]

» Place and route to 100HMz not}s

practical

— many PAR builds

— Currently running at 90MHz.

Jive—— |

Applications

» Application:
— Runs UPC (Unified Parallel C) version of a

subset of NAS (NASA Advanced Scientific)
Parallel Benchmarks (all class S, to date)

CG Conjugate Gradient, IS Integer Sort 512 cores
EP Embarassingly Parallel, MG Multi-Grid 512, 1008 cores
FT FFT <64 cores

RAME

+ Large Hardware/Software System with many bugs:

— Reliable low-level physical SDRAM controller has been a major
challenge

— A few MicroBlaze bugs in both gateware and GCC tool-chain
(race conditions, OS bugs, GCC backend bugs)

— FPU: Compilation Problems & Bad Results

— RAMP Blue pushed the use of BEE2 modules to new levels -
previously most aggressive users were for Radio Astronomy

+ memory errors exposed memory controller calibration loop errors
(tracked down to PAR problems)

+ DIMM socket mechanical integrity problems
+ Long “recompile” times hindered debugging
— FPGA place and route takes 3-30 hours

Implementation Issues

Software

* Development:
— Early: Xilinx FPGA tools (EDK, ISE)
— Final: RDL (RAMP Description Language)
« Allows parameterization
« First step in making RAMP Blue into a emulator
» System:
— Each node boots its own copy of uClinux
— Each node mounts an NFS file system
— Unified Parallel C (UPC)
« Shared memory abstraction over messages framework
— FPU code generated by custom GCC SoftFPU backend

m RDL & Emulation

* The “RAMP Description Language” (RDL)
— Hierarchical structural netlisting langauge
— Describes message passing distributed event
simulations
— System level: contains no behavioral spec.
» Tradeoffs
— Costs
+ Use of the RAMP target model
« Area, time and power to implement this model
— Benefits
« Abstraction of locality & timing of communications
« System debugging & power tools
« Determinism, sharing and research
— Goal: trade costs for benefits as needed

% Future Work / Opportunities

Processor/network interface currently very inefficient
— DMA support should replace programmed I/O approach

« Many of the features for a RAMP (emulator) currently missing
— Time dilation
« Ex: change relative speed of network, processor, memory)
— Extensive HW supported monitoring
— Virtual memory, other CPU/ISA models
— Other network topologies
— RDL implementation is a start
+ Collaboration
— Good starting point for processor+HW-accelerator architectures
— At least one other group at Berkeley is already using it
— Released version available soon in our design repository at:
http://repository.eecs.berkeley.edu

Conclusions

» A First Step Towards
— Developing a robust RAMP infrastructure for more
complicated parallel systems

» Required debugging/insight capabilities
« Driver & source for general RAMP infrastructure

— Reuseable Gateware
* Much of the RAMP Blue gateware is directly applicable to

future systems

— Fixing bugs and reliability issues
« Exposed & corrected bugs in BEE2 platform and gateware
+ Help in design of future RAMP hardware and gateware

* RAMP Blue represents the largest soft-core,
FPGA based computing system ever built! ‘

