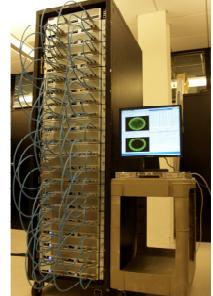


GSRC Gigascale Systems Research Center

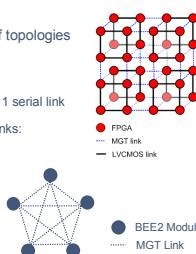
RAMP Blue: A Message-Passing Many-Core System in FPGAs

GSRC Fall Symposium 2007
September 20th, 2007

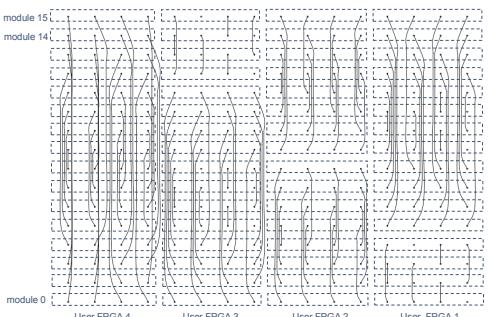

Alex Krasnov, Andrew Schultz, John Wawzynek, Greg Gibeling, and Pierre-Yves Droz

GSRC RAMP

Version Highlights


- V1: 256 cores total**
 - 8 BEE2 modules
 - 4 user FPGAs - 8 cores per FPGA
 - 100MHz Xilinx MicroBlaze soft cores
 - running uCLinux
 - Dec 06: 256 cores running benchmark suite of UPC NAS Parallel Benchmarks
- V2: 768 cores total**
 - 16 BEE2 modules, 12 cores per FPGA
 - Cores running at 90 MHz
- V3: 1008 cores total**
 - 21 BEE2 modules, 12 cores per FPGA
 - Summer 2007
- V4: Upcoming release**
 - Written in RDL
 - Growing parameterization support
 - Waiting on external code bug fixes
- Future versions**
 - Use newer BEE3 FPGA platform
 - Support for other processor cores.

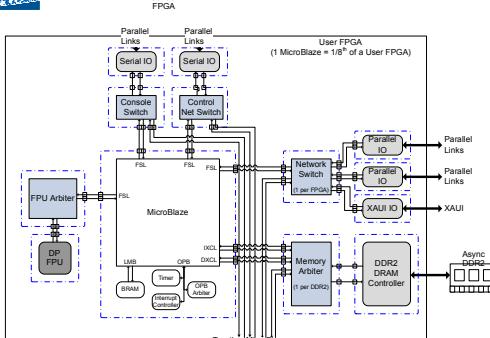
GSRC RAMP

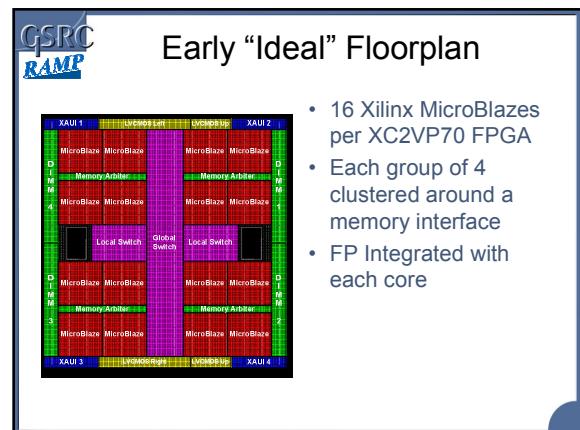
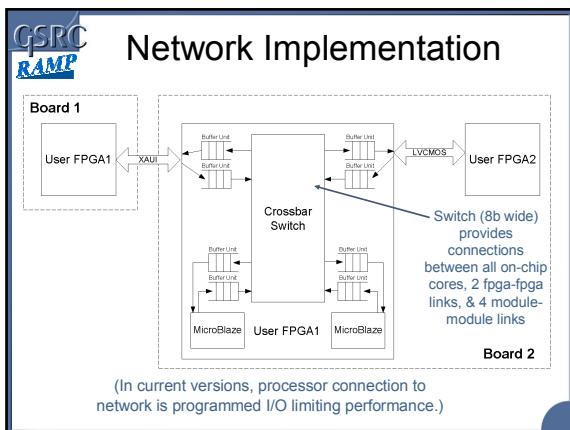
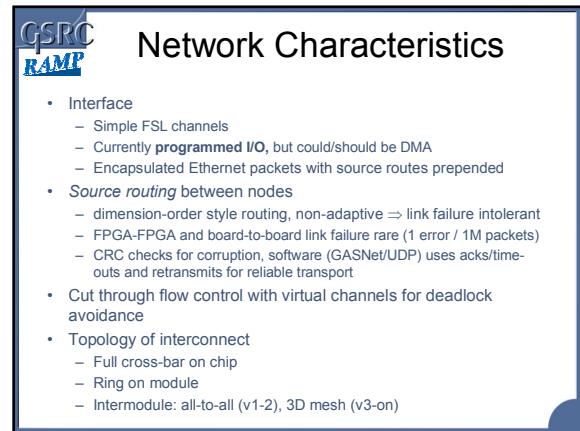
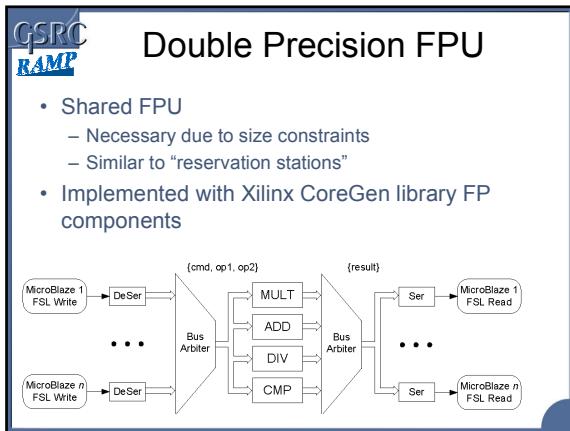
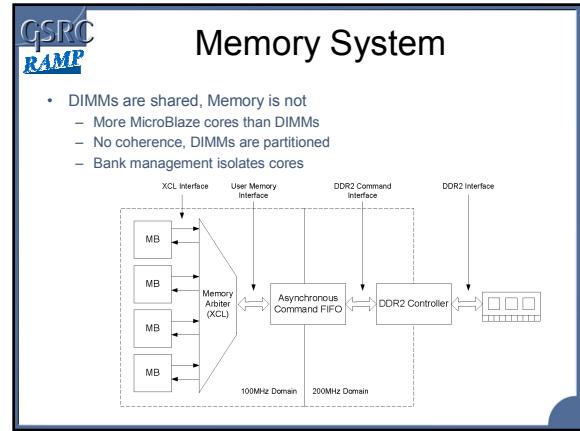
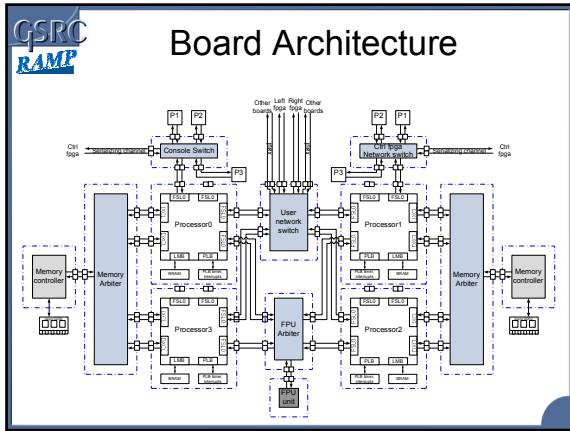

Physical Network Topology

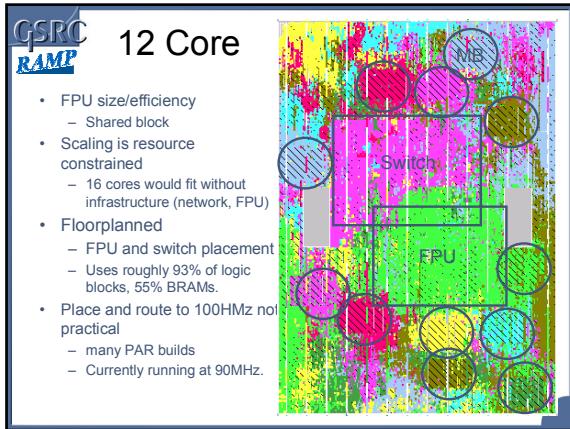
- InterModule**
 - 10Gb/s serial links permit a wide variety of topologies
 - High latency (10's of cycles)
 - All-To-All Topology
 - Used in RAMP Blue v1-v2
 - Each FPGA is at most 4 on-module links + 1 serial link connection away from any other
 - + Minimizes dependence on use of serial links:
 - Scales only to 17 modules total
 - 3-D mesh
 - Used in newer topologies
- InterFPGA**
 - High speed parallel I/O
 - Organized as a ring
 - Low latency (2-3 cycles)
- InterCore**
 - All-to-all within an FPGA
 - Only 12 cores

GSRC RAMP

16 Module 3D Mesh


GSRC RAMP







MicroBlaze v4


- 3-stage, RISC designed for FPGAs
 - Accounts for FPGA features & shortcomings
 - fast carry chains
 - lack of CAMs in cache
 - Short pipeline minimizes multiplexors in bypass logic
- Max clock rate of 100 MHz (~0.5 MIPS/MHz) on Virtex-II Pro
- Split I and D cache with configurable size, direct mapped
 - We use 2KB \$I, 8KB \$D
- Optional single precision floating point unit
- Up to 8 independent fast simplex links (FSLs) with ISA support
- Configurable hardware debugging support (watch/breakpoints)
 - MDM (Microprocessor Debug Module)
- gcc tool chain support and ability to run uCLinux

GSRC RAMP

Node Architecture

Software

GSRC RAMP

- Development:**
 - Early: Xilinx FPGA tools (EDK, ISE)
 - Final: RDL (RAMP Description Language)
 - Allows parameterization
 - First step in making RAMP Blue into a emulator
- System:**
 - Each node boots its own copy of uClinux
 - Each node mounts an NFS file system
 - Unified Parallel C (UPC)
 - Shared memory abstraction over messages framework
 - FPU code generated by custom GCC SoftFPU backend

Applications

GSRC RAMP

- Application:
 - Runs UPC (Unified Parallel C) version of a subset of NAS (NASA Advanced Scientific) Parallel Benchmarks (all class S, to date)

CG Conjugate Gradient, IS Integer Sort 512 cores
 EP Embarassingly Parallel, MG Multi-Grid 512, 1008 cores
 FT FFT <64 cores

RDL & Emulation

GSRC RAMP

- The “RAMP Description Language” (RDL)
 - Hierarchical structural netlisting language
 - Describes message passing distributed event simulations
 - System level: contains no behavioral spec.
- Tradeoffs**
 - Costs**
 - Use of the RAMP target model
 - Area, time and power to implement this model
 - Benefits**
 - Abstraction of locality & timing of communications
 - System debugging & power tools
 - Determinism, sharing and research
 - Goal: trade costs for benefits as needed

Implementation Issues

GSRC RAMP

- Large Hardware/Software System with many bugs:
 - Reliable low-level physical SDRAM controller has been a major challenge
 - A few MicroBlaze bugs in both gateware and GCC tool-chain (race conditions, OS bugs, GCC backend bugs)
 - FPU: Compilation Problems & Bad Results
 - RAMP Blue pushed the use of BEE2 modules to new levels - previously most aggressive users were for Radio Astronomy
 - memory errors exposed memory controller calibration loop errors (traced down to PAR problems)
 - DIMM socket mechanical integrity problems
- Long “recompile” times hindered debugging
 - FPGA place and route takes 3-30 hours

Future Work / Opportunities

GSRC RAMP

- Processor/network interface currently very inefficient
 - DMA support should replace programmed I/O approach
- Many of the features for a **RAMP (emulator)** currently missing
 - Time dilation
 - Ex: change relative speed of network, processor, memory)
 - Extensive HW supported monitoring
 - Virtual memory, other CPU/ISA models
 - Other network topologies
 - RDL implementation is a start
- Collaboration
 - Good starting point for processor+HW-accelerator architectures
 - At least one other group at Berkeley is already using it
 - Released version available soon in our design repository at: <http://repository.eecs.berkeley.edu>

Conclusions

- A First Step Towards
 - Developing a robust RAMP infrastructure for more complicated parallel systems
 - Required debugging/insight capabilities
 - Driver & source for general RAMP infrastructure
 - Reuseable Gateware
 - Much of the RAMP Blue gateware is directly applicable to future systems
 - Fixing bugs and reliability issues
 - Exposed & corrected bugs in BEE2 platform and gateware
 - Help in design of future RAMP hardware and gateware
- RAMP Blue represents the largest soft-core, FPGA based computing system ever built!